这个算法可能并非欧几里得发明,而仅仅是将先人的结果编进他的几何原本。数学家、历史学家范德瓦尔登认为卷7的内容可能来自毕达哥拉斯学院出身的数学家写的关于数论的教科书。辗转相除法可能是被大约公元前375年的欧多克斯发现的,但也有可能更早之前就已经存在,因为欧几里得和亚里士多德的著作中都出现了?νθuφa?peσi?一词(anthyphairesis,意为“辗转相减”),
最小公倍数
最小公倍数(lea.m.),如果有一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数,对于两个整数来说,指该两数共有倍数中最小的一个。计算最小公倍数时,通常会借助最大公约数来辅助计算。
基本概况
最小公倍数(lea.m.),如果有一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数,对于两个整数来说,指该两数共有倍数中最小的一个。计算最小公倍数时,通常会借助最大公约数来辅助计算。其中,4是最小的公倍数,叫做他们的最小公倍数。例如,十天干和十二地支混合称呼一阴历年,干支循环回归同一名称的所需时间,就是12和10的最小公倍数,即是60──一个“甲子”。对分数进行加减运算时,要求两数的分母相同才能计算,故需要通分;假如令两个分数的分母通分成最小公倍数,计算量便最低。
方法
短除法
步骤:一、找出两数的最小公约数,列短除式,用最小约倍数去除这两个数,得二商;二、找出二商的最小公约数,用最小公约数去除二商,得新一级二商;三、以此类推,直到二商为互质数;四、将所有的公约数及最后的二商相乘,所得积就是原二数的最小公倍数。例:求48和42的最小公倍数解:48与42的最小公约数为248/2=24;42/2=21;24与21的最小公约数为324/3=8;21/3=7;8和7互为质数2x3x8x7=336
质因数分解
举例:12和27的最小公倍数12=2x2x327=3x3x3必须用里面数字中的最大次方者,像本题有3和3的立方,所以必须使用3的立方(也就是333),不能使用3所以:2x2x3x3x3=4x27=108两数的最小公倍数是108
借助最大公约数求最小公倍数
步骤:一、利用辗除法或其它方法求得最大公约数;二、最小公倍数等于两数之积除以最大公约数。举例:12和8的最大公约数为412x8/4=24两数的最小公倍数是24注:公约数又称公因数。
示例
例题1
两个数的最大公因数是15,最小公倍数是90,求这两个数分别是多少?
15x1=15,15x6=90;当a1b1分别是2和3时,a、b分别为15x2=30,15x3=45。所以,这两个数是15和90或者30和45。
例题2
两个自然数的积是360,最小公倍数是120,这两个数各是多少?上!!
分析我们把这两个自然数称为甲数和乙数。因为甲、乙两数的积一定等于甲、乙两数的最大公因数与最小公倍数的积。根据这一规律,我们可以求出这两个数的最大公因数是360÷120=3。又因为(甲÷3=a,乙÷3=b)中,3xaxb=120,a和b一定是互质数,所以,a和b可以是1和40,也可以是5和8。当a和b是1和40时,所求的数是3x1=3和3x40=120;当a和b是5和8时,所求的数是3x5=15和3x8=24。
例题3
甲、乙、丙三人是朋友,他们每隔不同天数到图书馆去一次。甲3天去一次,乙4天去一次,丙5天去一次。有一天,他们三人恰好在图书馆相会,问至少再过多少天他们三人又在图书馆相会?
分析从第一次三人在图书馆相会到下一次再次相会,相隔的天数应该是3、4、5的最小公倍数。因为3、4、5的最小公倍数是60,所以至少再过60天他们三人又在图书馆相会。
例题4
一块砖长20厘米,宽12厘米,厚6厘米。要堆成正方体至少需要这样的砖头多少块?
分析把若干个长方体叠成正方体,它的棱长应是长方体长、宽、高的公倍数。现在要求长方体砖块最少,它的棱长应是长方体长、宽、高的最小公倍数,求出正方体棱长后,再根据正方体与长方体体积之间的关系就能求出长方体砖的块数。
例题5
甲每秒跑3米,乙每秒跑4米,丙每秒跑2米,三人沿600米的环形跑道从同一地点同时同方向跑步,经过多少时间三人又同时从出发点出发?
分析甲跑一圈需要600÷3=200秒,乙跑一圈需要600÷4=150秒,丙跑一圈需要6
喜欢武圣之冠请大家收藏:(m.ikshu.win),爱看书网更新速度最快。